Differentiability of Minimal Geodesics in Metrics of Low Regularity

نویسنده

  • PELLE PETTERSSON
چکیده

In Riemannian metrics that are only Hölder continuous of order α, 0 α 1, let minimal geodesics be the continuous curves realizing the shortest distance between two points. It is shown that for 0 < α 1, minimal geodesics are differentiable with a derivative which is at least Hölder continuous of order α=2 for 0 < α < 1 and which is Hölder continuous of order 1 for α= 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

λ-Projectively Related Finsler Metrics and Finslerian Projective Invariants

In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...

متن کامل

Minimal Geodesics and Nilpotent Fundamental Groups

Hedlund 18] constructed Riemannian metrics on n-tori, n 3 for which minimal geodesics are very rare. In this paper we construct similar examples for every nilpotent fundamental group. These examples show that Bangert's existence results of minimal geodesics 4] are optimal for nilpotent fundamental groups.

متن کامل

Mass Transportation on Sub-Riemannian Manifolds

We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann’s Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal m...

متن کامل

v 1 2 0 M ar 1 99 6 Minimal Geodesics and Nilpotent Fundamental Groups ∗ Bernd Ammann March 1996

Hedlund [He] constructed Riemannian metrics on n-tori, n ≥ 3 for which minimal geodesics are very rare. In this paper we construct similar examples for every nilpotent fundamental group. These examples show that Bangert’s existence results of minimal geodesics [Ba2] are optimal for nilpotent fundamental groups.

متن کامل

Convergence of Bergman geodesics on CP1

This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full infinite dimensional symmetric s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007